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Abstract

Misconceptions about energy conservation abound due to the gap
between physics and secondary school chemistry. This paper surveys

this difference and its relevance to the 1690s-2010s Leibnizian argu-
ment that mind-body interaction is impossible due to conservation
laws.

Justifications for energy conservation are partly empirical, such as
Joule’s paddle wheel experiment, and partly theoretical, such as La-

grange’s statement in 1811 that energy is conserved if the potential
energy does not depend on time. In 1918 Noether generalized results

like Lagrange’s and proved a converse: symmetries imply conserva-
tion laws and vice versa. Conservation holds if and only if nature is

uniform.
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The rise of field physics during the 1860s-1920s implied that en-
ergy is located in particular places and conservation is primordially

local: energy cannot disappear in Cambridge and reappear in Lincoln
instantaneously or later; neither can it simply disappear in Cambridge

or simply appear in Lincoln. A global conservation law can be inferred
in some circumstances.

Einstein’s General Relativity, which stimulated Noether’s work, is
another source of difficulty for conservation laws. As is too rarely real-

ized, the theory admits conserved quantities due to symmetries of the
Lagrangian, like other theories. Indeed General Relativity has more

symmetries and hence (at least formally) more conserved energies. An
argument akin to Leibniz’s finally gets some force.

While the mathematics is too advanced for secondary school, the

ideas that conservation is tied to uniformities of nature and that en-
ergy is in particular places, are accessible. Improved science teaching

would serve the truth and enhance the social credibility of science.
Key words: conservation laws, mental causation, energy, unifor-

mity of nature, locality, symmetries

1 Introduction

The idea is that any causal interaction between mind and
matter would violate the principle of the conservation of

energy.. . . So much the worse, it seems, for interactionism.
(Though traditional, the argument is still current; for ex-

ample, Dennett endorses it (1991, pp. 34-5).

This argument is flawed. . . .

In short, physicalists need to be wary of bad reasons to
think physicalism is true, arising from naivety about physics.

[Butterfield, 1997, pp. 146, 147]

The conservation of energy is a topic that has frequently arisen over

the centuries within the philosophy of mind, often as an objection to
broadly Cartesian mental causation. This paper will briefly summarize

the history of this objection [Pitts, 2020b] before exploring features
of conservation laws as presently understood by physicists but not

widely known among philosophers. This argument, due to Leibniz in
the 17th century and often repeated until today, begs the question

[Pitts, 2019, Cucu and Pitts, 2019]. That point has certainly been
made before, both in modern times [Averill and Keating, 1981] and in
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the 18th century, but not with full mathematical detail on conservation
laws, it seems.

It has been noticed recently that General Relativity finally gives
this kind of argument a measure of force [Pitts, 2020a]. How secondary

school treatments of conservation laws might be improved without the
need advanced mathematics or logic will then be explored, as will the

reasons that these improvements are important.

2 Mental Causation and/or Conserva-

tion Laws, 1690s-1760s

As early as the 1690s Leibniz publicly deployed his understanding of

conservation laws for momentum (due to Wallis, Wren and Huygens
[Hugens, 1669, Wallis, 1668, Wren, 1668]) and his own proposed law

of the conservation of living force (vis viva), an ancestor of energy,
as reasons to reject Cartesian soul-to-body causation [Leibniz, 1997,

Leibniz, 1969, Leibniz, 1981, Leibniz, 1985, Pitts, 2020b]. In the Theod-
icy he puts the matter thusly:

. . . two important truths . . . have been discovered since M.

Descartes’ day. The first is . . . [conservation of mv2, not
|v|.] The second discovery . . . [involves directionality: mo-

mentum ~p = m~v is a vector.] If this rule had been known
to M. Descartes,. . . I believe that that would have led di-

rect [sic] to the Hypothesis of Pre-established Harmony,
whither these same rules have led me. For apart from the
fact that the physical influence of one of these substances

on the other is inexplicable, I recognized that without a
complete derangement of the laws of Nature the soul could

not act physically upon the body. [Leibniz, 1985, p. 156]

Leibniz was of course taking on board scientific progress in speaking of
a conserved momentum vector rather than Descartes’s conservation of

quantity of motion (volume · speed). Whether Leibniz’s conservation
of vis viva, proportional to mass and the square of speed, was right

was unclear till the 19th century.
It is unclear whether Descartes wanted the conservation of motion

to hold even in the presence of mental causation and exploited his
directionless conservation of motion to that end (as Leibniz claims).

Apparently he never said this [Remnant, 1979, Garber, 1983]. “The
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overwhelming impression that one gets from the texts is that Descartes
just was not very concerned about reconciling his interactionism with

his conservation law.” [Garber, 1983] Indeed

there is reason to believe that Descartes may never have

been committed to the position that his conservation law
holds universally and may have allowed for the possibility
that animate bodies lie outside the scope of the laws that

govern inanimate nature. [Garber, 1983]

In any case some Cartesians did hold this view [Woolhouse, 1986]

[Schmaltz, 2008, pp. 172, 173], making it a view worth consideration
and critique.

Whereas in the last 170-odd years many have used Leibniz’s ar-

gument as a reason to deny the existence of souls altogether in favor
of materialism, Leibniz took dualism for granted but denied the soul-

body interaction posited by Descartes. One might almost say that
soul-body interaction was also motivated by common sense. Everyone

is familiar with eating more (say) pizza because one likes the taste; it
seems that the pizza causes a taste experience enjoyed by the mind,

which then causes bodily motions to put more pizza into the mouth,
which gives pleasure to the mind, etc.: iterated body-to-soul and soul-

to-body causation. Or consider more elementary experiences. If I de-
cide to raise my arm, my arm goes up. If I stub my toe on a rock,
then I feel pain. These seem to be examples of mental-to-physical

causation and physical-to-mental causation, respectively. Leibniz’s
own “machine” or “mill” argument seems to undermine physicalism

[Rescher, 1991, section 17]: no understanding of how mechanical parts
interact gives one the least idea of how “perception” occurs, as one

realizes by imagining examining the workings of a scaled-up version
of the machine. But Leibniz introduced the dualist non-interactionist

idea of “pre-established harmony,” according to which there is mental-
to-mental causation and physical-to-physical causation but no inter-

action between the two realms; there is only a divinely orchestrated
harmony between the two.1 Thus if I stub my toe, the pain is not
caused by my toe-stubbing, but by some (secret?) prior mental cause.

If I decide to raise my arm and my arm goes up, the arm-rising is not

1One might think that God’s creating the world with this harmony includes a case of
mental-to-physical causation if God is a mind or is relevantly like one and yet creates mat-
ter. Leibniz seemed not to find God’s creating the world objectionable [Alexander, 1956,
pp. 75, 76].
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caused by my decision to raise my arm, but by some (secret?) physical
cause. Thus as far as causation in the created realm is concerned, our

mental lives could happen in exactly the same way if there were no
physical world, and the physical world could happen in exactly the

same way if we had no mental lives. The former point was viewed
by critics as an objection in that it made God’s creating the physical

world pointless, far from having the sufficient reason that all of God’s
actions were claimed by Leibniz to have. The latter point is more

closely related to various contemporary philosophical debates.
How does Leibniz’s argument from causation serve some contempo-

rary purposes? In the early-mid 18th century the three plausible views
on the market were broadly Cartesian interactionism, Malebranche’s
occasionalism, and Leibniz-Wolff pre-established harmony. The last

held that there is no causal influence from finite minds (such as ours)
to the physical world; only God, an infinite mind, could act on the

physical world, because it would be impossible for God’s willings not to
come true. In the 19th century the idea of epiphenomenalism arose due

to Huxley: there is physical-to-mental causation but not mental-to-
physical. Epiphenomenalism can be (but need not be) a form of sub-

stance dualism. Contemporary uses of Leibniz’s anti-interactionist ar-
gument usually takes for granted that interactionist dualism is the only

philosophically plausible form of dualism. If interactionist dualists are
not all that common today (though there seems to be a recent increase
in respect for the view [Lycan, 2009, Lycan, 2013, Lycan, 2018]), pro-

ponents of pre-established harmony, occasionalism, and substance du-
alist epiphenomenalism are far rarer, so this belief about the rela-

tively greater plausibility of interactionist dualism seems uncontro-
versial today—in marked contract to France in 1700 or Germany in

1730. Thus Leibniz’s anti-interactionist argument serves as an osten-
sibly scientific subargument that refutes substance dualism by refut-

ing interactionism, the most plausible version. His anti-interactionist
argument, if successful, also refutes the possible view of interaction-

ist property dualism, that there are mental properties (but no men-
tal substance) and these properties can act2 on the physical world

2That is, act non-redundantly. In contrast to the 18th century debate (to my knowl-
edge), the current debate entertains the conceptual possibility of mental causation that
makes something happen that physical causation would have made to happen anyway.
Thus nowadays it is possible to affirm mental causation without the mind’s making any
real difference. This conceptual possibility is often rejected by denying that there is sys-
tematic overdetermination.
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[Searle, 2004, pp. 44-46] [Zimmerman, 2007, Crane, 2001, pp. 40, 43,
50].

3 Some 18th Century Physicists’ Im-

plicit Views: Newton and Euler

Leibniz’s argument faced serious opposition, whether tacit or explicit,
in the 18th century; while Leibnizian pre-established harmony gained

the upper hand in Germany for a while, eventually interactionism re-
covered as the dominant view even there [Watkins, 1995a, Watkins, 1998,

Watkins, 1995b, Priestly, 1777, p. 64]. This opposition included not
only some very good philosophers such as Crusius and Knutzen in

Germany, but also, one can argue, at least implicitly the two best
physicists of the eras of Leibniz and Wolff, namely, Newton and Euler

[Pitts, 2020b]. It is difficult, perhaps impossible, to find either Newton
or Euler explicitly addressing Leibniz’s argument, but it seems clear

what they thought or should have thought given what they did say.
Newton’s unpublished work often showed his belief in mental force,

as in a draft of Opticks :

Seeing therefore the variety of motion (wch we see) in the
world is always decreasing, there is a necessity of conserving

& recruiting it by active principles; such as are (the power
of life & Will by which animals move their bodies with great

& lasting force;) [McGuire, 1968, pp. 169, 170, bracketed
and cancelled]

Newton in fact quite frequently affirmed strong views of mental cau-

sation [Dempsey, 2006]. He seems not to have been worried by the
idea of conservation law failure due to mental force.3 It is quite ob-

3One might think that a Newtonian could appeal to Newton’s laws for reasoning in
support of exact and exceptionless conservation laws. (I thank Shaul Katzir for this
suggestion.) Such a move might be even more appealing today than it was for historical
Newtonians. The third and especially fourth rules of reasoning are relevant. The fourth
rule says:

In experimental philosophy, propositions gathered from phenomena by induc-

tion should be considered either exactly or very nearly true notwithstanding

any contrary hypotheses, until yet other phenomena make such propositions

either more exact or liable to exceptions.

This rule should be followed so that arguments based on induction may not
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vious that momentum conservation fails due to lack of the action-
reaction otherwise guaranteed by Newton’s third law of motion. If

the mind exerts some influence on the body, almost certainly the
body does not exert an equal and opposite force on the mind—it

is not at all clear what such a claim could even mean—so momentum
is not conserved. While I am not aware of Newton’s explicitly ad-

dressing Leibniz’s argument, it is quite evident what he should have
thought about it: one should simply accept non-conservation of mo-

mentum due to mental force. Non-conservation of energy (or rather
its ancestor vis viva, mv2) was already accepted by Newton and many

others because of inelastic collisions, so momentum (non)conservation
would be the only serious question for a Newtonian. Relatedly, in
the 18th century the vis viva controversy raged over the proper mea-

sure of force: whereas the conservation of momentum and the con-
servation of energy now are seen as complementary, in that era it

was thought that there should be a “true measure of force,” which
was conserved in physical interactions [Clarke, 1727, Hankins, 1965,

Laudan, 1968, Iltis, 1970, Iltis, 1971, Gale, Jr., 1973, Heimann, 1977,
Papineau, 1977, Terrall, 2004, Smith, 2006, Rey, 2018]. The conser-

vation of momentum was accepted on both sides—one notes that it
follows immediately from Newton’s second and third laws of motion—

but the conservation of vis viva was a controversial claim allied to
claims that vis viva was the true measure of force.

Leibniz’s argument seems to have been equally unimpressive to

Leonhard Euler. If Newton was the dominant physicist of the late
17th century, Euler was similarly dominant in the mid-18th century.

He was one of the greatest mathematicians of all time and the most
prolific. His work on mechanics, fluids, optics, and acoustics makes it

reasonable to call him a physicist avant le lettre. The Euler-Lagrange
equations are crucial in theoretical physics to this day. Euler also dis-

covered/invented the mathematics of local conservation laws, which

be nullified by hypotheses. [Newton, 1999, p. 442]

I suggest that Newton’s fourth rule gives two different potential escape routes for the in-
teractionist. One possible loophole for the interactionist is to say that the non-conservation
is small and hence compatible with conservation’s being “very nearly true” even if incom-
patible with its being true [van Strien, 2015, Butterfield, 1997, pp. 146, 147]. Another,
perhaps more promising loophole is to argue that other phenomena making conservation
liable to exceptions are known or highly plausible, namely, mental causation. Newton’s
own above-cited views on mental causation [Dempsey, 2006, McGuire, 1968, pp. 169, 170]
indicate that he might well have agreed with the invocation of the second loophole.
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are appropriate for continuous media (fluids and solids, and to some
degree modern fields, as opposed to particles), namely the continuity

equation, which involves partial derivatives with respect to time and
space [Euler, 1757]. Euler took the conservation of energy (vis viva)

to be not generically true on account of inelastic collisions [Euler, 1746,
Calinger, 2016]. Euler was a staunch interactionist dualist [Euler, 1926,

Euler, 1752] and a vigorous opponent of Leibniz-Wolff pre-established
harmony [Euler, 1840, I Letts. 79-115, II Letts. 1-17] and of mon-

ads [Broman, 2012]. He was an orthodox Christian and occasionally
an apologist [Euler, 1840, Euler, 1965, Arana, 1994, Breidert, 2007,

Knobloch, 2010, Drozdek, 2010, Knobloch, 2018]. As such he can
hardly have failed to notice that mental influence the physical vio-
lated conservation of momentum; evidently he just didn’t care. Eu-

ler could not have been the stout opponent of pre-established har-
mony and staunch interactionist that he was, as well as being the

best physicist in the world, without having an informed opinion about
the quite popular Leibniz-Wolff conservation argument. In short, the

Leibnizian conservation objection, while holding the upper hand in
Germany for a season, was opposed by great physicists implicitly and

good philosophers explicitly during the 18th century and was driven
back, with interactionism regaining the upper hand [Watkins, 1995a,

Watkins, 1998, Watkins, 1995b, Priestly, 1777, p. 64].

4 Conservation of Vis Viva/Energy Re-

vived

Various factors led to the revival of the conservation of vis viva/energy

from the end of the 18th to the middle of the 19th century [Chang, 2013,
Smith, 1998]. Some empirical inputs included Count Rumford’s ex-

periments on heat from boring of cannon and Sir Humphrey Davy’s
melting ice by friction [Joule, 1850]. The fall of the caloric theory of
heat opened the door for the mechanical equivalent of heat, putting

empirical quantitative flesh on the old proposal that motion lost due to
friction (such as from rubbing one’s hands together vigorously) is still

motion, but now of insensibly small particles. Joule found the mechan-
ical equivalent of heat using a paddle wheel experiment [Joule, 1846,

Joule, 1845, Joule, 1850, Young, 2015]. Helmholtz articulated a broad
theoretical basis for conservation [von Helmholtz, 1847]. Thus the

conservation of energy was revived apparently for good. There were
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many basically simultaneous partial discoverers including Mayer as
well [Kuhn, 1959, Cahan, 2012]. For the moment I omit what one

might retrospectively call ‘high’ theoretical physics (the least action
principle, the symmetry-conservation link, and local field theory),

much of which was the province of mathematicians’ analytical me-
chanics in that era and was not considered generally applicable.

It was not long before the Leibnzian energy conservation objection
to vitalism and to interactionist dualism (most obviously to soul-to-

body causal influence) was revived during the 1860s-80s by Helmholtz
and Du Bois-Reymond [von Helmholtz, 1861, Wegener, 2009, van Strien, 2015].

Such authors argued for the reducibility of physiology to physics,
which would exclude vital or mental forces. One type of response
by vitalists and interactionist dualists involved almost-conservation.

As Maxwell, Stewart, Cournot, and Saint-Venant pointed out in var-
ious ways, the delicate construction of life made possible mental or

vital influence on the physical with only the tiniest non-conservation
[van Strien, 2015]. By analogy to firing a gun, sailing a ship, or con-

trolling a locomotive, a human decision can launch with control the
bullet, ship or train without the mind’s supplying most of the en-

ergy to move the bullet, ship or locomotive; the mind simply makes
a small exertion that directs the release of a large amount of phys-

ically or chemically stored potential energy. Thus interactionist du-
alism (or interactionism) is at least compatible with the evidence for
conservation, which is never perfect, even if incompatible with strict

conservation. An alternative view combined exact conservation and
indeterminism [van Strien, 2015]. While the latter view has a certain

elegance, it is harder to see whether it can work. Thus in the 19th
century the conservation of energy resurfaced with a new name and

on better grounds, now integrated into thermodynamics at the phe-
nomenological level and gradually tied to symmetries and the principle

of least action at the theoretical level.

5 Leibniz’s Argument Against Inter-

actionism Revived

Did the vindication of the conservation of energy also vindicate Leib-

niz’s argument against interactionism? At least sociologically it seemed
to do so: the Leibnizian argument reasoning played a role in psy-

chology from the 19th century onwards [Marshall, 1982, Daston, 1982,
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Heidelberger, 2004, Wegener, 2009]. This was not inevitable on phys-
ical grounds: the implicit Newtonian view that momentum is not

conserved due to mental causation (while vis viva is not conserved on
more general physical grounds) could easily have been updated to a

view that both momentum and energy are not conserved due to mental
causation. While such a view has been taken by some, the argument

from conservation laws against mind-body interaction has continued
to inspire confidence in analytic philosophy to this day. According to

Dan Dennett,

the conservation of energy. . . accounts for the physical im-
possibility of ‘perpetual motion machines,’ and the same

principle is apparently violated by dualism. This confronta-
tion between quite standard physics and dualism. . . is widely

regarded as the inescapable and fatal flaw of dualism. [Dennett, 1991,
p. 35]

According to Mario Bunge,

Dualism violates conservation of energy. If immaterialmind
could move matter, then it would create energy; and if mat-
ter were to act on immaterial mind, then energy would dis-

appear. In either case energy—a property of all—and only
concrete things would fail to be conserved. And so physics,

chemistry, biology, and economics would collapse. Faced
with a choice between these “hard” sciences and primitive

superstition, we opt for the former. [Bunge, 1980, p. 17]

Unfortunately Bunge’s catastrophe is short on argument; the solutions
(exact or approximate) of partial differential equations in physics are

typically fairly robust and tolerant of external sources [Jackson, 1975]
without yielding catastrophic instabilities. Another proponent of the

Leibnizian energy conservation objection is Paul Churchland:

[non-epiphenomenalist] . . . forms of Dualism do fly in the
face of basic Physics itself, a rather more damning matter

[than flying “in the face of the constituting convictions of
Folk Psychology and the explanatory practices they sus-

tain”], since any position that includes non-physical ele-
ments in the causal dynamics of the brain must violate

both the law that energy is neither created nor destroyed,
and the law that the total momentum in any closed system

is always conserved. In short, you simply can’t get a change
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in any aspect of the physical brain (for that would causally
require both energy changes and momentum changes) save

by a compensatory change in some other physical aspect of
the brain, which will thereby lay claim to being the cause

at issue. There is simply no room in a physical system for
ghosts of any kind to intervene in some fashion to change its

dynamical behavior. Any physical system is ‘dynamically
closed’ under the laws of Physics. (Indeed, it was this very

difficulty, over a century ago, that motivated the desperate
invention, by Thomas Huxley, of Epiphenomenalism in the

first place.) [Churchland, 2011]

In short, this sort of argument is widely accepted [Morowitz, 1987]
[Pollock, 1989, p. 19] [Flanagan, 1991, p. 21] [Fodor, 1998, p. 64]

[McGinn, 1999, p. 92] [van Inwagen, 2009, p. 246] [Searle, 2004, p.
42] [Lycan, 2011] [Westphal, 2016, pp. 41-44] (and more in lists in

([Montero, 2006, Collins, 2008, Gibb, 2010, Pitts, 2019])). While many
or most of those presenting this sort of argument are naturalists, pre-
sumably the acquiescence in the conservation of energy is intended

as a submission to a scientific fact (a fact that provides confirmation
for naturalistic philosophy) rather than as an assertion of naturalis-

tic philosophy. A mere assertion of naturalistic philosophy would be
dialectically inappropriate in an argument against interactionist dual-

ism. A scientific fact, on the other hand, would fit the bill nicely.
While interactionist dualism has been a minority view in recent

decades, a large part of this minority (or its sympathizers such as
C. D. Broad) has responded to this objection by denying any in-

compatibility between such mental causation and conservation laws
[Broad, 1937, Gibb, 2010, White, 2017]. Presumably these philoso-
phers also take the acquiescence in the conservation of energy as a

submission to a scientific fact rather than as a mere assertion of natu-
ralistic philosophy. These philosophers often are not naturalists; while

Broad was no theist, his acceptance of parapsychology/spiritualism
[Broad, 1937, Broad, 1953, Broad, 1962] at least involves the existence

of spirits and their influence on the physical world. There would be
little point in conceding that naturalism is true when one actually

takes it to be false. But accepting scientific facts would be quite ap-
propriate.

In an important respect Dennett, Bunge and Churchland are cor-
rect: the conservation laws and interactionist dualist mental causation
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are indeed basically incompatible.4 In this sense the anti-dualists are
closer to the mark. The greater logical strength of local, as opposed to

merely global, conservation laws5 leaves no room for hiding the soul’s
influence by, e.g., compensation by the opposite amount of energy

elsewhere.
Probably both of these groups are motivated by a view that the

conservation of energy (and perhaps likewise the conservation of mo-
mentum) is a scientific fact of the form that energy can be neither

created nor destroyed. While the modal force of “can” could be dis-
cussed, there is at least the implication that in the actual world, energy

is neither created nor destroyed.

6 Responses to Leibniz’s Argument

Ladyman et al. have warned us, however, that not everything aiming
to be naturalistic metaphysics (in the sense of respecting science) is

altogether successful.

We might thus say that whereas naturalistic metaphysics
ought to be a branch of the philosophy of science, much

metaphysics that pays lipservice to naturalism is really phi-
losophy of A-level chemistry. [Ladyman et al., 2007, p. 24]

Is the conservation issue another example where A-level (advanced sec-
ondary school) chemistry is assumed in a context where the difference
with graduate-level physics is significant?

Unfortunately the answer is “yes.” The former (anti-interactionist)
view is a reasonably accurate grasp of what it would be like for the con-

servation laws to hold fully, but fails to recognize that the symmetry-
conservation law link enshrined in Noether’s theorem (on which more

below) imposes on them a burden to argue that the conservation laws
are true—not just close approximations or true in most places and

times (which no dualist should deny), but exactly true everywhere and
always including brains. Consequently the argument assumes what

4Subtle forms of reconciliation might avoid a contradiction while giving up much of
what one expect an interactionist position to involve [Lowe, 2003].

5This statement assumes for simplicity that the local laws can be integrated to give a
global law, a process that can fail to make sense, for example, if there is too much activity
no matter how far out one goes [Peebles, 1993, p. 139]. Without that qualification, local
conservation is not logically stronger than global conservation.
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was to be proven. This view also tends to overlook the locality of con-
servation laws and hence exaggerates the menace of non-conservation

(e.g., [Bunge, 1980, p. 17]); conservation can hold perfectly well in
astrophysics and refrigerators, even if interactionist dualism is true.

The conservation-affirming interactionist view also tends to overlook
the symmetry-conservation law link—why else would one work so hard

to establish consistency when it seems so unpromising?—and often de-
ploys a mistaken conception of conservation laws as primarily global

(not local) in an effort to uphold conservation through nonlocal com-
pensation. Nonlocal compensation amounts to trying to make up for

a violation in one place with a violation in another place, repeating
rather than mitigating the offense. The idea is unworkable in any case:
it is absurd that either there be another soul(s) elsewhere requiring

just the opposite amount of non-conservation (especially if souls are
libertarian-free) or that energy conservation fail somewhere with no

soul present.
It appears that only a minority of interactionist dualists in the last

century or so has been willing to let the conservation laws fail, often
with a partial awareness of the symmetry-conservation link [Ducasse, 1960,

Averill and Keating, 1981, Larmer, 1986, Plantinga, 2007]. As it hap-
pens, this sort of view (naturally with less grasp of the symmetry-

conservation law link) was much more common in the 18th century
[Watkins, 1995a, Watkins, 1998, Pitts, 2020b]. In the recent discus-
sion, letting the conservation laws fail presumably has seemed like a

bridge too far for all but the heartiest of a priori and/or religious meta-
physicians, or the most informed about the symmetry-conservation

relation [Averill and Keating, 1981]. Surprisingly enough, this view
shows the best understanding of the relevant theoretical physics. Whether

it shows a good view of neuroscience is of course a wholly separate
question not addressed in this paper.

The failure of the argument from conservation laws against inter-
actionism has been previously noted by Jeremy Butterfield (partly

quoted as the epigraph):

This argument is flawed, for two reasons. The first rea-
son is obvious: who knows how small, or in some other

way hard to measure, these energy gains or losses in brains
might be? Agreed, this reason is weak: clearly, the onus is

on the interactionist to argue that they could be small, and
indeed are likely to be small. But the second reason is more
interesting, and returns us to the danger of assuming that
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physics is cumulative. Namely, the principle of the conser-
vation of energy is not sacrosanct. The principle was for-

mulated only in the mid-nineteenth century; and although
no violations have been established hitherto, it has been

seriously questioned on several occasions.. . . And, further-
more, it is not obeyed by a current relevant proposal. . . for

solving quantum theory’s measurement problem.

In short, physicalists need to be wary of bad reasons to

think physicalism is true, arising from naivety about physics.

[Butterfield, 1997, pp. 146, 147]

When we recall that Newton and Euler were both at least implicitly
committed to accepting interactionism and letting the conservation

laws fail, it is less surprising when those well versed in physics today
also reject the Leibnizian argument.

7 Conservation Laws Are Local

One of the key features of conservation laws in modern physics is

that they are local [Lange, 2002, chapter 5]. The high school chem-
istry understanding of conservation laws, by contrast, apparently takes

conservation to be simply E = constant, a global conservation law.
While there is talk about energy flowing from one place to another,
there is rarely any suggestion that this flow is so disciplined as to

be described by one (differential) equation at each point in space, as
opposed to a single equation for the whole world. Expressed using

single-variable calculus (a good step towards a more modern view),
one can write the global conservation of energy E = constant equiv-

alently as dE
dt = 0. Electromagnetism and gravitation were subsumed

into local field theory during the 1870s and the 1910s, respectively, re-

moving the examples of action at a distance and making conservation
in fundamental physics take much the same form that it had taken

since the mid-18th century for continuous media (fluids and solids).
Now energy and momentum are understood to have locations and
move at finite speeds.6

6Actually conservation laws in General Relativity has been controversial since the 1910s.
One can safely say that mathematical equations of the usual conservation form arise in
General Relativity due to symmetries of the laws, as in other theories. Whether one can
interpret the results realistically is a more difficult question. Fortunately, that question
does not need resolution here, though it will be discussed further below.
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A local conservation law says in effect that for each little volume,
the energy (or momentum or charge. . . ) in the volume changes only

insofar as energy (. . . ) flows through its boundary. Thus there is no
teleportation (whether instantaneous, at the speed of light, or at any

other pace), no disappearance into nothing, and no appearance out of
nothing. Mathematically one employs an energy density ρ(t, x) and an

energy current density ~J(t, x). A local conservation law takes the form
∂ρ(t,x)

∂t
+~∇·~J(t, x) = 0 at each place and time: the rate of increase of the

energy per unit volume at a given place and time, and the tendency
of energy to spew out of that place and time (the “divergence” of

the current density), together add up to 0. Thus if the energy per

unit volume is going up at some time and place
(

∂ρ(t,x)
∂t

> 0
)

, then

energy must be getting sucked in (negative divergence) rather than

spewed out there and then: ~∇ · ~J(t, x) < 0. The two terms must have
opposite signs in order to add up to 0. This equation is called the
continuity equation. Introducing the universal quantifier ∀ (for all) to

make explicit that this equation is intended to apply at all places and
times, one writes

(∀t)(∀x)

[

∂ρ(t, x)

∂t
+ ~∇ · ~J(t, x) = 0

]

.

This quantified equation is like a continuous conjunction of conserva-
tions in all the different places and times. The continuity equation,

with detailed expressions for ρ and ~J derived from the Lagrangian
in question, is the conservation in the symmetry-conservation mutual

implication of Noether’s first theorem.
If one uses the more expressively adequate component notation

using ∇ · J = ∂Jx

∂x
+ ∂Jy

∂y
+ ∂Jz

∂z
, then one has

(∀t)(∀x)(∀y)(∀z)

[

∂ρ

∂t
+

∂Jx

∂x
+

∂Jy

∂y
+

∂Jz

∂z
= 0

]

.

Component notation generalizes more readily to General Relativity,

in which one faces a choice between the continuity equation formally
describing exact conservation of a partly mysterious combination (ma-
terial energy + gravitational (pseudo-?) energy) and the elegant 4-

dimensional vector/tensor character that lets one convert freely be-
tween components relative to coordinate basis and coordinate-independent

bold-faced symbols, arrows with magnitude and direction, etc. [Anderson, 1967].
In component notation, one can express either the continuity equa-
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tion (which employs a gravitational energy-momentum “pseudoten-
sor,” which is difficult to interpret due to various real or alleged vices)

or a tensorial equation that represents a balance law rather than a
conservation law. Thus the component notation does not prejudge

the content. In more elegant notation with bold-faced symbols, one
can naturally express only the balance law, not the conservation law.

One would need a good reason to abandon the conservation law, which
in my opinion at least does not exist.

8 Gentle Failure of Conservation Laws

Writing out the logical form of a local conservation law in terms of

quantifiers is useful because it helps to illustrate a form of robust-
ness, in contrast to the catastrophe that Bunge fears. One knows

that the negation of a conjunction is the disjunction of negations:
¬(A&B) ↔ (¬A ∨ ¬B). Universal quantification is like a huge con-

junction, while existential quantification is like a huge disjunction.
Thus the negation of a universally quantified statement (in this case

the continuity equation) tells us that conservation fails somewhere at
some time, perhaps at many time-places. This claim can be made

using the existential quantifier ∃. Formally one has ¬∀ ↔ ∃¬, so one
has

¬(∀t)(∀x)(∀y)(∀z)

[

∂ρ

∂t
+ ~∇ · ~J = 0

]

↔ (∃t)(∃x)(∃y)(∃z)

[

∂ρ

∂t
+ ~∇ · ~J 6= 0

]

.

Here the negation of an equality has been rendered as an inequality,
which seems defensible if interpreted sympathetically; it is possible,

however, that the mathematical expressions simply fail to make sense
and hence fail to justify an inequality. Hence the interactionist wants

to say that conservation holds in most times and places, but fails in a
few, namely, where souls act on brains. This claim is easier to express

in ordinary English than in formal logic.
If conservation fails somewhere sometime, that is not nearly as

frightening as if it failed everywhere all the time. Note that without
the explicit quantifiers, one might think that the failure of the conser-

vation law would be ∂ρ
∂t + ∂Jx

∂x +
∂Jy

∂y + ∂Jz

∂z 6= 0, and one might think

that ∂ρ
∂t + ∂Jx

∂x +
∂Jy

∂y + ∂Jz

∂z 6= 0 means nonconservation everywhere and
always. (Perhaps that is the catastrophe that Bunge feared.) For-

tunately such a conclusion would be logically fallacious, as is clear
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once the quantifiers are made explicit. Non-conservation in brains,
though surprising, would not threaten the thermodynamics of refrig-

erators or astrophysics. While the use of quantifiers might suggest
the academic level of a university-level formal logic course, that is not

correct. One can easily understand, for example, that if a box isn’t
brown and large, then it might be brown and not large, or large and

not brown, or neither brown nor large. If something isn’t true ev-
erywhere and always, then it is false (at least) somewhere sometime.

Much as there was no need for introducing the continuity equation
and its concomitant mathematics of multi-variable differential calcu-

lus for expressing the basic idea of the continuity equation, there is no
need for introducing quantificational logic to point out that the failure
of conservation might be a quite isolated affair rather than a global

catastrophe. Clearly such ideas are within reach at the secondary
school level.

Note also that if conservation laws fail somewhere sometime, it
might be the case that this failure is very small: only a little bit

of energy comes into being or disappears on account, e.g., of the
soul’s influence. Newton’s laws of reasoning, we recall from above,

allowed for mathematical relations that are only approximate. Vari-
ous 19th century authors entertained the possibility that a slight de-

viation from conservation might suffice for mind-to-body causation
[van Strien, 2015]. If nonconservation is sufficiently small in magni-
tude, or occurs only in places where one does not look, it might go

undetected. This is yet another way that Bunge’s catastrophe could
fail to occur.

9 Symmetries Imply Conservation Laws

& vice versa

Philosophers and others have discussed the idea of the natural world’s
being unaffected by anything else under a few different terms. In

the 19th century the “uniformity of nature” was a popular topic in
relation to the foundations of geology and in relation to inductive in-

ference. There is also talk about open vs. closed systems, especially in
relation to closed systems. Nowadays physicists and philosophers of

physics talk about “symmetries” [Brading and Castellani, 2003], es-
pecially but not only symmetries of the Lagrangian density, a math-

ematical function of the physical fields and their rates of change. In
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classical field theory, the fields’ equations of motion can be derived
from the Lagrangian density. In the path integral approach to quan-

tum field theory, the Lagrangian density is again the starting point.
The uniformity of nature (in time and place) picks out some of the

key symmetries that might hold for a Lagrangian density. In that
respect, at least as long as a Lagrangian density is the right place

to start physical theorizing, the benefits of talking about uniformi-
ties of nature are retained by talking about symmetries. 19th cen-

tury results about the relationship between symmetries and conserva-
tion laws [Lagrange, 1811, Hamilton, 1834, Jacobi, 1996] were gener-

alized and synthesized by Max Born and then Emmy Noether during
the 1910s [Born, 1914, Noether, 1918]. Born noted that for theories
of continua (field theories), conservation of energy and of momen-

tum hold when the Lagrangian density is independent of time and of
place, respectively. Noether proved a more general result that includes

Born’s result, along with a converse: conservation laws imply sym-
metries. Contrapositively, one could say that non-symmetry implies

non-conservation. The symmetry-conservation link runs in both direc-
tions: symmetry ↔ conservation law [Noether, 1918, Brading, 2001,

Kosmann-Schwarzbach, 2011].
A disadvantage of talk about open vs. closed systems is that it is

not obvious how these terms apply when one is considering the possi-
bility of immaterial influences. If I have a soul that acts on my brain,
is the physical world still a closed system? While the interaction-

ist might say “no,” the answer is somewhat less clear given the fairly
common view (albeit contested both a few centuries back and recently

[Grant, 1981, Pasnau, 2011, Pitts, 2019]) that spirits are not spatially
located. If there is no soul in my brain, isn’t that enough for applying

conservation to my brain, saying that the amount of energy in my
brain or any part thereof is conserved except insofar as energy flows

through the boundaries? Occasionally one sees energy conservation in-
voked as an objection to miracles as well [Stoeger, 1995, Fales, 2010,

p. 13], though probably most people figure that a being said to create
the world ex nihilo is perfectly free to effect energy non-conservation.7

Few have shared Newton’s view that God’s omnipresence implies be-

ing located everywhere, so the absence of spirits from space is likely

7Amusingly, some calculations of the energy of the universe in General Relativ-
ity give 0, so it isn’t obvious that creation ex nihilo, or for that matter evolution ex

nihilo, conflicts with global conservation [Tryon, 1973, Rosen, 1994, Johri et al., 1995,
Banerjee and Sen, 1997, Thirring, 2003]. Local conservation is a more difficult question.
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a poor criterion for a closed system at least in the divine case. For-
tunately, questions about the location of spirits, finite or infinite, are

entirely irrelevant, if one talks about symmetries of the Lagrangian
density, or even about uniformities of nature, rather than open/closed

systems. Symmetry/uniformity talk puts the emphasis on where spir-
its act, not on where they are—which is highly desirable because the

location of spirits has been a difficult question from the Scholastics
onward. Thus it is clear that spirits acting on matter falsify sym-

metries/uniformities of nature in those space-time regions where the
spirits in question act (if they exist and act on the physical world, that

is). Hence spiritually speaking, spirit-to-matter causation implies an
open rather than a closed system, but talking about symmetries or
uniformities instead is greatly illuminating.

Given the symmetry-conservation law link, what, if anything, fol-
lows for the Leibnizian objection? If I have a soul that acts on my

brain, it does so on Earth during my life, not on Mars 100 years ago.
That soulish action on the physical world is akin to an externally ap-

plied potential, not to a physical entity with its own physical dynamics
described by its own terms in the Lagrangian density. One is familiar

with external potentials in modelling gravity as providing potential
energy mgz for a point mass at height z above the Earth (assuming z

is sufficiently small); that the point mass might generate gravity of its
own or set in motion the Earth and hence alter the Earth’s gravita-
tional field is not denied, but it is neglected mathematically. If gravity

is a real physical entity (which it is), then such a treatment is only
a frequently useful approximation in our circumstances, not a reflec-

tion of how gravity really is. On the other hand, the soul surely has
no physical dynamics. While its workings are presumably somehow

sensitive to the state of the physical world, and the soul presumably
somehow acts on the physical world (at least according to the view

under critique), the dynamics of the soul should involve beliefs and
desires, a space of reasons, not pushes and pulls, or pressures, energy

densities and momentum fluxes or other physical causes. I smell a hot
pizza (matter-to-spirit influence). I decide to walk toward the pizza,
pick up a piece, and eat it (a typical instance of belief-desire folk psy-

chology with spirit-to-matter interaction). The taste motivates me to
eat some more pizza. Given interactionist dualism (which must be

assumed provisionally in order to generate a refutation from energy
conservation), the physical world’s evolution is punctuated by influ-

ence from an immaterial realm not describable by Lagrangian field
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theory, though the influence itself presumably is so describable. Thus
the physical equations of motion involve the mind’s influence as an

external potential depending on time and place, analogy to a particle
subject to gravity or a particle in an electromagnetic field (textbook

physics problems). Consequently energy conservation and momentum
conservation will not be true where and when the soul is acting.

Much as a particle in an applied gravitational field (that is, one
in which one neglects the sources and dynamics) can fail to conserve

momentum, one can have time-dependent Lagrangians in a biologi-
cal context.8 Now two issues arise: neglecting for the dynamics of

the environment (which causes the dependence on time) and distin-
guishing between fundamental vs. higher-level descriptions. Clearly
there is nothing surprising about a time-dependent Lagrangian due

to the dynamics of the environment; one might simply be uninter-
ested in anything more than its influence on the system in question.

Then the system’s energy is not conserved, but presumably the dy-
namics of the system plus environment, should one bother to consider

it, would conserve energy (and momentum). But the disanalogy to
mind-body interaction is evident: whether one considers the dynamics

of the brain or the dynamics of the whole physical world, one still has
a time-dependent influence due to the influence of the non-physical

mind, which has no dynamical equations from a Lagrangian. This
point remains whether one envisages a description with the mind act-
ing on fundamental physical fields (electrons, electromagnetism, and

perhaps quarks, say) or a macroscopic description with the mind act-
ing on higher level entities (parts of the brain). Clearly the latter

description would be of more relevance to neuroscience, however.

10 Circularity of Conservation Ob-

jection

The trouble for the Leibnizian objection is the need to show why the

interactionist dualist should apply modus tollens rather than modus
ponens. The Leibnizian claims that there is some absurdity or refuta-

tion here. What is it? Why should the interactionist not simply accept
non-conservation as a consequence? Often one sees proponents of the

Leibnizian objection simply introducing the conservation of energy as

8I thank a referee for mentioning this example.
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a premise. Isn’t the conservation of energy a Fact, one known since
the 19th century and taught in secondary school? If energy conser-

vation is a Fact, then the Leibnizian argument works. Like Leibniz,
physicalist philosophers of mind typically believe that physics cate-

gorically shows energy conservation. But in light of the discussion of
local conservation laws and the symmetry-conservation law relation-

ship, the conservation of energy in the times and places in question
is not a fact, but rather a tendentious assertion that has little or no

claim on the interactionist—little or no claim, that is, except insofar
as empirical study of the brain has licensed it. The fact that energy

is conserved in steam engines and refrigerators is highly relevant ev-
idence assuming that one formerly believed that souls act on steam
engines and refrigerators. But no one has ever thought that. Thus

introducing the conservation of energy as a premise simply begs the
question against interactionist dualism.

As Aristotle pointed out in the Posterior Analytics, premises in a
scientific demonstration must be better known than and prior to the

conclusion [Smith, 2015]. Similar criteria are appropriate for mak-
ing an argument that ought to change someone’s mind. But given

Noether’s theorem and converse, symmetries and conservation laws
are equally well known, and neither is prior. The claim that souls act

on bodies clearly violates symmetries: my decision to eat pizza now
affects my brain now, not the Sun years ago. With symmetries failing
where and when my soul acts on my brain, the conservation of energy

and momentum fail in my brain.
How should an interactionist respond? A common bad reply is de-

nial that conservation is violated [Broad, 1937, Gibb, 2010, White, 2017].
This denial is presumably motivated by the belief that conservation

laws are categorical, so that the Leibnizian objection would be potent
if conservation failed. But given local conservation laws and the two-

way relation between symmetries and conservation laws, conservation
indeed does fail. So this response is not available. But it is also by

no means clear why the physically well-informed interactionist should
want to avoid this conclusion.

A better answer is, “yeah, nonconservation, so what?” A suffi-

ciently small non-conservation that happens sufficiently rarely and in
places that have not been carefully examined is not absurd on phys-

ical grounds. One should try to do the philosophy of real physics,
not the philosophy of A-level chemistry, to generalize an old warn-

ing [Ladyman et al., 2007, p. 24]. The conditionality of conservation
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has been noted occasionally in the last century or so [Ducasse, 1960,
Averill and Keating, 1981, Larmer, 1986, Lowe, 1992, Plantinga, 2007],

but little heeded. What has been missing, presumably, is a suffi-
ciently detailed treatment to show that this view is not a reactionary

claim by religious or a priori metaphysicians insufficiently acquainted
with science (as many seem to have believed—recall the Dennett,

Bunge and Churchland quotations above), but rather a clear conse-
quence modern physics (apart from General Relativity) [Pitts, 2019,

Cucu and Pitts, 2019, Pitts, 2020a]. The conditionality of conserva-
tion was also the view of many of the best minds in centuries past,

including Descartes (likely), Newton (likely), Knutzen, Crusius, Eu-
ler (likely), and Maxwell (sometimes) [Garber, 1983, Watkins, 1995a,
Watkins, 1998, van Strien, 2015, Pitts, 2020b]. On closer investiga-

tion, Dennett’s “initial allegiance . . . to the physical sciences” [Dennett, 1994]
does not actually pay off in diagnosing an “inescapable and fatal flaw”

of dualism using quite standard physics.
Rejecting the Leibnizian conservation objection does not, of course,

imply that one takes interactionist dualism to be true or even plau-
sible. What does follow (apart from General Relativity) is that any de-

cent argument will be empirical and will involve neuroscience [Thompson, 2008].
If there exist scientists who have the evidence against interactionism,

those experts are neuroscientists, not physicists.

11 What Difference Does General Rel-

ativity Make?

Thus far I have paid little attention to an elephant in the room,

namely, the 100+-year controversy over the status of energy and con-
servation in General Relativity. One can find well-informed people

who deny that there are conservation laws in General Relativity. One
can also find people who say that while distorting Noether’s (first) the-
orem. I will start with some mathematical facts that, in my opinion,

are some of the most important things to say about the subject.
When Max Born noted that the absence of t, x, y, or z from the

Lagrangian density of a local field theory implies a conservation law
[Born, 1914], he made a statement of even broader applicability than

he perhaps intended give his context of special relativistic field theo-
ries. His statement is true even for non-relativistic field theories and

for General Relativity as well [Bergmann, 1958, Goldstein, 1980, p.
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555]. (Einstein seemed not to notice this, because he worked hard to
show conservation by some other means and wrote that “Grossmann &

I believed that the conservation laws were not satisfied” [Pitts, 2016].)
Whereas the rigid translations yielding conservation in Special Rela-

tivity are described by a finite number of parameters, in General Rel-
ativity one has infinitely many due to four arbitrary functions worth

of coordinate freedom. In effect one can apply Noether’s first theorem
in infinitely many different ways, getting results bearing no simple re-

lationship. (One person’s definition of sitting still and waiting (time
translation) is someone else’s definition of wiggling around a bit.) Tra-

ditionally this fact has been interpreted as counting against the objec-
tive localization or gravitational energy [Misner et al., 1973, p. 467] or
perhaps even against its reality due to having incompatible properties

[Hoefer, 2000, Duerr, 2019]; another possible interpretation is that the
different symmetries pick out different energies [Pitts, 2010]. Noether

[Noether, 1918] also showed that the total energy-momentum in Gen-
eral Relativity, unlike earlier theories, consists of a term proportional

to the field equations for gravity only and a “curl” term with auto-
matically vanishing divergence. More familiar theories would have an

additional nonzero term giving the value of the conserved quantities
and would have terms relating to the field equations for all of the fields,

not just the gravitational field. Is conservation missing or trivial in
General Relativity? Some have concluded so.

Given the Noether-based connection between symmetries and con-

servation laws, it seems to me an odd interpretive move to say that a
theory with more symmetries of the Lagrangian density has fewer con-

servation laws, or even no or only trivial conservation laws. Noether’s
(first) theorem yields infinitely many conserved currents. What are

the usual objections to these quantities? One of the two main ob-
jections is that the gravitational energy term is pseudotensorial, not

tensorial: the gravitational energy at a point depends in a radical way
on the coordinate system, with no translation scheme (transformation

rule) relating pseudotensor values in different coordinate systems. A
common interpretation is that formal gravitational energy is generated
or destroyed simply by a changed labelling of space-time, so such ex-

pressions should not be interpreted realistically. Instead gravitational
energy is “not localizable.” A second objection is that there is a rad-

ical non-uniqueness of the gravitational pseudotensor, some standard
examples belonging to Einstein, Papapetrou, Landau-Lifshitz, etc.

If one finds these objections impressive (and many or most people
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have), then one still faces the mathematical fact that there exist formal
conserved currents arising from symmetries of the Lagrangian density

(not the geometry) involving (formally) rigid translations in accord
with Noether’s first theorem, much as in earlier theories [Schmutzer, 1972].

The equations do not disappear or become false by virtue of fail-
ing to meet some interpretive criteria. These currents take the form√−gT µ

ν +
√−gtµν involving material energy-momentum

√−gT µ
ν and

gravitational (pseudo-?) energy-momentum
√−gtµν . The sum

√−gT µ
ν +√−gtµν satisfies the continuity equation (everywhere and always)

3
∑

µ=0

∂µ(
√−gT µ

ν +
√−gtµν ) = 0.

In these respects gravitational (pseudo-) energy is just like the energy

for any other field. The material energy-momentum itself satisfies only

3
∑

µ=0

∇µ(
√−gT µ

ν ) =
3
∑

µ=0

∂µ(
√−gT µ

ν ) −
3
∑

µ=0

3
∑

α=0

√−gT µ
αΓα

µν = 0,

where the Christoffel symbols Γα
µν depend on the metric tensor and its

first derivatives. This latter equation generally cannot be integrated
to yield constant energy and constant momentum (even with favorable

boundary conditions) due to the second term [Weyl, 1922, pp. 236,
269-271] [Misner et al., 1973, p. 465] [Lord, 1976, p. 139]. Hence the
sum of material energy + gravitational (pseudo-?)energy is locally con-

served and (if boundary conditions permit) globally conserved, while
material energy usually is not locally or globally conserved. Clearly

the gravitational (pseudo-?) energy expression
√−gtµν looks, walks

and quacks in many respects like energy; are these respects sufficient

to interpret it as energy? (Recently the reality of gravitational en-
ergy in at least some contexts has been defended on functionalist

grounds [Read, 2018].) The typical physics textbook view is that one
should not take the local conservation involving

√−gT µ
ν +

√−gtµν se-

riously, but one should take seriously the spatially integrated con-
servation law when boundary conditions permit, thus also picking
out a small collection of contingently physically preferred coordinates

[Misner et al., 1973]. This orthodoxy has seen increased resistance in
recent decades, however. How does gravitational energy manage to

be objectively nowhere in particular while having a superabundance
of local descriptions and also good global behavior?
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A common confusion is to consider symmetries of the space-time
geometry as required for conservation laws. For theories prior to

General Relativity, this requirement is reasonable. But Noether’s
theorem, which applies even to General Relativity, looks for sym-

metries of the Lagrangian density, not symmetries of the geometry
[Noether, 1918, Trautman, 1966]. The point is that the space-time

metric in General Relativity has its own field equations and hence is
relevantly similar to matter; thus the metric does not need to have

symmetries in order for Noether’s theorem to find symmetries and
conservation laws.

Confusion on this point (a complaint that the metric lacks “mo-
tions,” that is, Killing vector fields, symmetries) lay at or near the root
of a high-profile gravitational heresy led by Soviet/Russian Academi-

cian A. A. Logunov for decades ([Logunov and Folomeshkin, 1977,
Denisov and Logunov, 1982], critiqued [Faddeev, 1982, Zel’dovich and Grishchuk, 1986,

Zel’dovich and Grishchuk, 1988]). Robert Gentry’s complaints about
nonconservation as an absurdity of Big Bang cosmology are analogous

[Gentry, 1998, Gentry and Gentry, 1998] (critiqued [Pitts, 2004a, Pitts, 2004b]).
Other authors similarly think that symmetries of the geometry (as

opposed to the Lagrangian density) are needed for conservation laws,
but interpret the inferred lack of conservation laws as a feature of Gen-

eral Relativity, or at least as an acceptable consequence, rather than
a bug [Motl, 2010, Hossenfelder, 2016, Physics Stack Exchange, 2017,
Hossenfelder, 2018, Siegel, 2018, Maudlin et al., 2019]. But Noether’s

theorem has no concept or role for geometry or symmetries thereof:
there are only fields in the Lagrangian density and symmetries of the

Lagrangian density. Thus General Relativity really does have Noether-
based conservation laws, albeit with unfamiliar and in some respects

unattractive qualities. Carroll, while preferring the nonconservation
view and showing no clarity about Noether’s theorem, regards the

topic as a matter of interpretive choice [Carroll, 2010].
The idea that General Relativity lacks conservation laws might

lead one to expect various consequences that are in fact very ques-
tionable. Besides above-cited claims that this lack yields a refuta-
tion of the theory, one also finds authors who exploit the supposed

nonconservation as a resource for energy non-conserving processes.
Russell Humphreys claimed that this non-conservation was a resource

for creation science to dispose of heat from accelerated nuclear decay
[Humphreys, 2000] (critiqued [Pitts, 2009b]).

More relevant to present purposes is the invocation of this claimed
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non-conservation to respond to Leibniz’s conservation objection to
interactionist dualism [Mohrhoff, 1997, Collins, 2008, Collins, 2011].

Unfortunately this claim does not work: for pre-General Relativis-
tic theories this answer is unnecessary (the symmetry-conservation

link sufficing to show the question-begging character of Leibniz’s ob-
jection), but for General Relativity it is false [Pitts, 2020a]. As one

can demonstrate using the Bianchi identities, thus avoiding questions
of interpreting pseudotensors, General Relativity has some tendency

(though not all that much) to resist the introduction of external influ-
ences, unlike earlier theories. One can show that Einstein’s equations

force up to four scalar fields worth of would-be mental causation to
vanish; at that point the resistance is broken. If one believes that
General Relativity conserves energy, one can interpret this claim in

terms of a strengthened neo-Leibnzian energy conservation objection,
one that doesn’t so obviously beg the question. Those who interpret

General Relativity as not conserving energy can still use the Bianchi
identities to draw this conclusion. The fact that the non-conservation

interpretation’s heuristic force is directly opposed to the actual math-
ematics should be noted, however.

The two traditional objections to pseudotensors are less compelling
now than they were over 20 years ago. According to James Nester and

collaborators, the non-uniqueness problem is a feature rather than a
bug: the different pseudotensors all have physical meaning in relation
to different boundary conditions [Chang et al., 1999, Chang et al., 2000,

Nester, 2004]. One can interpret the coordinate-dependence of pseu-
dotensors as the kind of property needed in order to represent the

infinity of conserved energies [Pitts, 2010, Pitts, 2009a] that must ex-
ist to correspond to the infinity [Bergmann, 1958] of symmetries of

the Lagrangian density. If a 10- or 16-component expression for grav-
itational energy had a transformation rule to show the equivalence of

the values in different coordinate systems, then only one energy would
be expressed, not infinitely many as is required. Coordinate systems

are somewhat analogous to natural languages; tensor calculus is akin
to publishing every book translated into every language, whereras a
pseudotensor as akin to publishing Shakespeare in English, Goethe

in German, etc., using far less paper to express the same ideas to a
sufficiently capable reader. These two infinities (from nonuniqueness

and coordinate dependence) might turn out to be the same infinity:

. . . the totality of all conservation laws C̄ρ,ρ = 0 in one coor-
dinate system is equivalent to one of them, stated in terms
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of all conceivable coordinate systems. [Bergmann, 1958]

In light of the infinity of rigid symmetries, one infinity is desirable.

Hence the door is less closed than it once seemed regarding taking the
Noether pseudotensor mathematics seriously.

What can one say about energy conservation and General Rela-
tivity to a secondary school audience? Clearly the locality of energy
conservation still holds mathematically, though there are questions

of interpretation. Whereas pre-General Relativistic theories passively
accept non-uniform external influences due to the if-and-only-if rela-

tion between symmetries and conservation laws, General Relativity
has some tendency to exclude such influences, although not a very

strong one.

12 How To Improve Secondary Edu-

cation about Conservation Laws

The views that most non-academics and probably most philosophers

have about conservation laws seem to be largely based on secondary
school chemistry. The mathematics involved in providing a proper

statement of conservation laws, which are local, involves multi-variable
differential calculus to describe how quantities vary with time while

leaving place alone, or vary with location in the x-direction at constant
time and constant y- and z-coordinates. Such mathematics tends to

be learned (at least in the American system, which is familiar to me) in
the second year of an undergraduate education in engineering, math-
ematics, or physical science, but likely is not learned at all if one spe-

cializes in another subject. The most basic features of the symmetry-
conservation law relation tend to be learned in the third year of an

American undergraduate education in physics using a mechanics book
like Marion and Thornton [Marion and Thornton, 1988]. Most of the

machinery appears in graduate-level physics [Goldstein, 1980, chapter
12], if one encounters it in coursework at all. Such material is not

and should not be part of a standard philosopher’s education. Hence
neither locality nor (bi)conditionality of symmetries is likely to be

widely known among philosophers (but see [Lange, 2002, chapter 5]).
It therefore isn’t necessarily anyone’s fault that philosophers build ar-
guments around an inadequate understanding of conservation laws.

It is natural to assume that one’s secondary school science education
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would be refined and extended, and perhaps subtly amended, but not
fundamentally contradicted by university-level or even graduate-level

study.
Unfortunately the line between subtle amended and fundamen-

tal contradiction is unsustainable given the exacting uses that some
philosophers aim to make of conservation laws. Is the following claim

a subtle amendment to or a fundamental contradiction of the lesson
from secondary school chemistry? “Conservation holds exactly almost

everywhere and always, but suffers small failures at times in the brains
of living persons and perhaps higher animals.” One might think that

the quoted claim is a subtle amendment of the secondary school chem-
istry story. But the quoted claim is useless for a Leibnizian argument.
The Leibnizian argument makes use of conservation in a way that is

not robust or stable in something like the physical sense; under small
perturbations, the argument goes away. Is the claim in quotation

marks true? That is primarily an empirical question—one answered
not by looking at steam engines or laboratory flasks or thigh muscles,

but at the brains of the beings in question.
While Lagrangian local field theory and the continuity equation are

likely to remain outside the education of most philosophers and are
certainly out of reach for secondary school chemistry classes, ordinary

language approximate paraphrases are certainly possible. Here is an
approximate paraphrase of the locality of conservation:

Energy is located in particular places, and conservation is

primordially local. Energy does not disappear in one place
and reappear in another, or simply disappear, or simply ap-

pear; it only moves around. The amount of energy in some
region changes only to the degree that energy flows into or
out of the boundaries of the region. In some contexts, it

is possible to add up all the conservation laws describing
how energy moves around and infer that the total amount

of energy in the universe remains constant. But cosmology
suggests that one cannot do that in the real world.

This statement clearly does not require university-level mathematics

in the form of multi-variable differential calculus to state or under-
stand. An approximate paraphrase of the symmetry-conservation law

link, neglecting locality at this stage, might go like this:

Energy is conserved if and only if the laws are uniform over

time. Momentum is conserved if any only if the laws are
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uniform across space.

Putting locality and the symmetry-conservation law link together, one

might say this:

Energy is conserved at a given time and place if and only if
the laws there and then do not vary with time. Momentum

is conserved at a given time and place if and only if the
laws there and then do not vary with place.

These approximate paraphrases admittedly do not carry the full

content of the exact statement (at least neglecting quantum physics)
[Cucu and Pitts, 2019, Goldstein, 1980, p. 555]:

(∀x0)(∀x1)(∀x2)(∀x3)

(

3
∑

ν=0

∂

∂xν
T ν

µ = − ∂L
∂xµ

)

.

Here T ν
µ applies to all physical fields together; gravity is not singled

out for special treatment. This quantitative statement also implies,

for example, that a weak explicit dependence of the Lagrangian den-
sity on time implies a little energy non-conservation, whereas a strong
explicit dependence of the Lagrangian density on time implies a lot of

energy non-conservation. But the approximate paraphrases do carry
far more content than is generally conveyed in secondary school chem-

istry and enough to understand the failure of Leibniz’s objection due
to begging the question. The equation also shows that symmetries

and conservation laws can be patchy, applying in most but not all of
the world.

The difference made by General Relativity has been discussed
above.

13 Why Does It Matter?

There are a number of reasons, both truth-related and action-related,

for reforming secondary school teaching about the conservation of en-
ergy to become more accurate. First, for the sake of truth, one should

not confuse a philosophical thesis about the absence of spirit-to-matter
influence (perhaps supportable by arguments from a Spinoza or a

Hume) with a result of the physics of matter (perhaps supported by
work by a Joule or a Mayer). Some of the discoverers of energy con-

servation would agree.
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Second, such confusion is likely to engender in some circles a wider
suspicion of science as embodying a naturalistic agenda. If ‘science

denial’ is presently considered problematic, then making shoddy ar-
guments in the name of science is not the way forward; rather such

arguments provide good reasons for denying claims marketed as sci-
entific. The Leibnizian objection, though marketed as scientific, is

indefensible, so making or facilitating this argument diminishes the
credibility of science. The interesting scientific evidence in the neigh-

borhood comes from neuroscience, not thermodynamics. General Rel-
ativity makes a difference, but this difference is on the cutting edge of

research and hence perhaps in need of seasoning before popularization.
Third, intensified suspicion of claims marketed as scientific will

also retard significant action taken regarding climate change. To ef-

fect such change, especially in the United States—a place where there
exists an unusually strong combination of popular resistance to scien-

tific authority and large-scale combustion of fossil fuels—science and
science teaching must be seen as fact-based rather than as philosophi-

cally tendentious. This paper has discussed an opportunity for further
improvement.

Fourth, regarding the history of science, reforming teaching on
conservation laws makes it easier to understand what some 19th cen-

tury proponents of conservation laws (who in some cases made ex-
ceptions for Creative Power, for example) were saying and were not
saying. Thus one can see the highly non-trivial innovation proposed by

Helmholtz in 1861 that was not in his earlier work [von Helmholtz, 1847,
von Helmholtz, 1861].
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gegen die Einwürfe der Freygeister. In Speiser, A., Trost, E.,

and Blanc, C., editors, Leonhardi Euleri Opera Omnia, vol-
ume 12 of 3, pages 267–286. Societatis Scientiarum Naturalium

Helveticae, Zurich. 1747; French and English translations at
http://eulerarchive.maa.org/tour/tour 17.html, document E92.

[Faddeev, 1982] Faddeev, L. D. (1982). The energy problem in Ein-

stein’s theory of gravitation (dedicated to the memory of V. A.
Fock). Soviet Physics Uspekhi, 25:130–142.

[Fales, 2010] Fales, E. (2010). Divine Intervention: Metaphysical and
Epistemological Puzzles. Routledge, New York.

[Flanagan, 1991] Flanagan, O. (1991). The Science of the Mind. MIT

Press, Cambridge, Massachusetts, second edition.

[Fodor, 1998] Fodor, J. (1998). The mind-body problem. In Arnold,
N. S., Benditt, T. M., and Graham, G., editors, Philosophy

Then and Now, pages 63–77. Blackwell, Malden, Massachusetts.
Reprinted from Scientific American, January 1981, pp. 114-123.

[Gale, Jr., 1973] Gale, Jr., G. (1973). Leibniz’ dynamical meta-
physics and the origins of the vis viva controversy. Sys-
tematics, 11(3):205. http://www.systematics.org/journal/vol11-

3/Leibniz Dynamical Metaphysics.pdf.

[Garber, 1983] Garber, D. (1983). Mind, body, and the laws of nature

in Descartes and Leibniz. Midwest Studies in Philosophy, 8:105–134.

[Gentry, 1998] Gentry, R. V. (1998). The new redshift interpretation
affirmed. arxiv.org/pdf/physics/9810051.

[Gentry and Gentry, 1998] Gentry, R. V. and Gentry, D. W. (1998).

The genuine cosmic rosetta. arxiv.org/pdf/gr-qc/9806061.

[Gibb, 2010] Gibb, S. (2010). Closure principles and the laws of con-

servation of energy and momentum. Dialectica, 64:363–384.

[Goldstein, 1980] Goldstein, H. (1980). Classical Mechanics. Addison-
Wesley, Reading, Massachusetts, second edition.

35



[Grant, 1981] Grant, E. (1981). Much Ado about Nothing: Theories
of Space and Vacuum from the Middle Ages to the Scientific Revo-

lution. Cambridge University Press, Cambridge.

[Hamilton, 1834] Hamilton, W. R. (1834). On a general method in
dynamics; by which the study of the motions of all free systems of

attracting or repelling points is reduced to the search and differen-
tiation of one central relation, or characteristic function. Philosoph-

ical Transactions of the Royal Society of London, 124:247–308.

[Hankins, 1965] Hankins, T. L. (1965). Eighteenth-century attempts

to resolve the Vis viva controversy. Isis, 56:281–297.

[Heidelberger, 2004] Heidelberger, M. (2004). Nature from Within:
Gustav Theodor Fechner and His Psychophysical Worldview. Uni-

versity of Pittsburgh Press, Pittsburgh.

[Heimann, 1977] Heimann, P. M. (1977). “Geometry and nature”:

Leibniz and Johann Bernoulli’s theory of motion. Centaurus, 21:1–
26.

[Hoefer, 2000] Hoefer, C. (2000). Energy conservation in GTR. Stud-

ies in History and Philosophy of Modern Physics, 31:187–199.

[Hossenfelder, 2018] Hossenfelder, S. (Monday, July 30, 2018). 10

physics facts you should have learned in school but probably didn’t.
BackReAction. http://backreaction.blogspot.com/2018/07/10-

physics-facts-you-should-have.html.

[Hossenfelder, 2016] Hossenfelder, S. (Wednesday, Octo-

ber 19, 2016). Dear Dr B: Where does dark energy
come from and what’s it made of? BackReAction.

http://backreaction.blogspot.com/2016/10/dear-dr-b-where-
does-dark-energy-come.html.

[Hugens, 1669] Hugens, C. (1669). A summary account of the Laws of

Motion, communicated by Mr. Christian Hugens in a letter to the
R. Society, and since printed in French in the Journal des Scavans
of March 18. 1669. Philosophical Transactions of the Royal Society,

4:925–928.

[Humphreys, 2000] Humphreys, D. R. (2000). Accelerated nuclear de-
cay: A viable hypothesis? In Vardiman, L., Snelling, A. A., and

Chaffin, E. F., editors, Radioisotopes and the Age of the Earth: A
Young-Earth Creationist Research Initiative, volume 1, pages 333–

379. Institute for Creation Research, El Cajon, California, and Cre-
ation Research Society, St. Joseph, Missouri.

36



[Iltis, 1970] Iltis, C. (1970). D’Alembert and the vis viva controversy.
Studies in History and Philosophy of Science, 1:135–144.

[Iltis, 1971] Iltis, C. (1971). Leibniz and the vis viva controversy. Isis,
62:21–35.

[Jackson, 1975] Jackson, J. D. (1975). Classical Electrodynamics. Wi-

ley, New York, second edition.

[Jacobi, 1996] Jacobi, C. G. J. (1996). Vorlesungen über analytis-
che Mechanik, Berlin 1847/8. Deutsche Mathematiker-Vereinigung.

Vieweg, Braunschweig. Edited by Helmut Pulte.

[Johri et al., 1995] Johri, V. B., Kalligas, D., Singh, G. P., and
Everitt, C. W. F. (1995). Gravitational energy in the expanding

universe. General Relativity and Gravitation, 27:313–318.

[Joule, 1845] Joule, J. P. (1845). On the existence of an equivalent
relation between heat and the ordinary forms of mechanical power.

The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 27:205–207.

[Joule, 1846] Joule, J. P. (1846). On the mechanical equivalent of

heat. Report of the Fifteenth Meeting of the British Association
for the Advancement of Science; Held at Cambridge in June 1845,

(Chemical Section):31.

[Joule, 1850] Joule, J. P. (1850). On the mechanical equivalent of
heat. Philosophical Transactions of the Royal Society of London,

140:61–82.

[Knobloch, 2010] Knobloch, E. (2010). Leonhard Euler als Theo-
retiker. In Bredekamp, H. and Velminski, W., editors, Mathesis
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